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LETTER TO THE EDITOR 

Generalisation of the PainlevC test 

Sanjay Puri 
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana- 
Champaign, 1110 W Green Street, Urbana, Illinois 61801, USA 

Received 13 December 1985 

Abstract. We suggest a generalisation of the Painlev6 test to include situations in which 
the leading order singularity is not determined by a simple singularity analysis. Such 
situations often arise in equations whose non-lineanties are convective derivatives (e.g. 
Hasegawa-Mima equation in plasma physics). 

As yet, there is no systematic method for determining whether or not a dynamical 
system is integrable. However, recent work (e.g. Bountis 1984, Chang et a1 1982) 
indicates that there is a connection between integrability of a dynamical system and 
the analytic structure of its equations of motion. The Painlevi test was originally 
proposed in connection with partial differential equations solvable by the inverse 
scattering transform. It was conjectured that if all possible reductions (perhaps after 
a change of variables) of a partial differential equation to an ordinary differential 
equation had the PainlevC property (i.e. the only movable singularities of the solution 
in the complex time plane were simple poles (Ince 1956)), then the original partial 
differential equation was solvable by the inverse scattering transform. A generalised 
version of this test, which is directly applicable to partial differential equations, was 
proposed by Weiss et a1 (1983). A crucial element in the application of this test is the 
determination of the leading order singularity (usually specified by the exponent p) 
of the series solution. However, there are equations in which the leading order singular 
terms (resulting from a series expansion) identically cancel. This is often the case in 
equations whose non-linearities are the convective derivative. A classic example is 
that of the Hasegawa-Mima equation (Hasegawa and Mima 1978), which describes 
the propagation of ZD drift waves in a plasma. This equation is known to have vortex 
solutions translating steadily along the x direction (Larichev and Reznik 1976, Makino 
et a1 1981b). These show strong stability under collision (Makino et a1 1981a, b), 
behaving in a manner reminiscent of 2~ solitons. This led Ichikawa et a1 (1983) to 
speculate that the Hasegawa-Mima equation may be integrable. Unfortunately, we 
cannot apply the PainlevC test of Weiss et a1 (1983) to equations of the Hasegawa-Mima 
type. This is because we are unable to determine p in the usual way, viz by demanding 
that the leading order terms be equally singular. In this letter, we propose a generalisa- 
tion of the PainlevC test so that it can be applied to such equations. We then illustrate 
the proposed generalisation by means of a simple model equation. 

The proposed generalisation is as follows. 
If p is undetermined by the leading order singularity analysis, take p as arbitrary 

and proceed in the usual way. In general, the expansion coefficients will now satisfy 
partial differential equations. One of the required arbitrary functions will be comprised 
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of the infinite constants of integration of these differential equations. The others appear 
at 'resonance' situations. If we determine that all values of p (and there is at least one 
such) satisfying 'resonance' are integer and make all expansion coefficients single- 
valued, then the considered system is integrable. 

The condition on all values of p satisfying 'resonance' is similar to that of Chang 
er a1 (1982), who find that more than one singular expansion is possible for the 
HCnon-Heiles equation. 

As an example, we consider a model dispersive equation, with the relevant feature 

U, + UxU, ,  = u,ux, + uxx. (1) 

Application of the PainlevC test proceeds by attempting to construct a consistent, 
single-valued solution about a movable singularity manifold (e.g. Weiss er a1 1983). 
The Cauchy-Kowalesky theorem would require that we have the correct number of 
arbitrary functions (two in this case) in the expansion. To facilitate application of the 
test, we rewrite (1) as 

* = U ,  (2a) 

9 + u x 9  , = 9qx + U,. (2b) 

Expand + and U about the arbitrary, yet well-behaved in x and t, singularity manifold 
( e ( x ,  r )  = 0 )  as 

m + = (c~,,(x, r ) e ( x ,  c ) " - ~ - '  
n = O  

00 

U = C u,(x, r ) e ( x ,  t)"? 
n = O  

Here, p measures the order of the singularity. Substitution of (3) into (2) gives 

( n  -p)unen-p-le, + ~ ~ , ~ e " - p ]  
n =O 

and 
W 

[ ( n - p ) ( m - p -  i)un+men+m-2~-3 exet +(n - p ) ~ , , + ~ , , e ~ + ~ - ~ p - ~  Ox 
n.m=O 

+ 

+(n - p ) u n e n - p - l e ,  - 9 n e n - p - ' +  ~ . , , e ~ - ~ ] .  (4b) 

[(n - p ) ( n  - p -  i ) ~ , e ~ - ~ - ~ e f , + 2 ( n  - - p ) U n , x e n - P - l e x  
n = O  

In the usual case (Weiss et a1 1983) we expect (46) to fix the value of p .  In this 
case, it does not. This is because the most singular terms cancel out. However, from 
(46) it is clear that p cannot take non-integer values. If p were non-integer, the 
expansion terms from the linear (U, and U,) and nonlinear (uxuxt and u p x t )  terms in 
(46) would have to be independently matched. But the expansion for the linear 
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diffusion terms is consistent only for p = -1, leading to a contradiction. Furthermore, 
the only non-positive values p can take are 0 and -1. For these, ( 1 )  can easily be 
shown to have the Painlev6 property. Taking p as an arbitrary positive integer, we 
can find the recursion relations for t ( k ,  t+bk from (4). Equating coefficients of e k - p - l  in 
(4a) yields 

$k = (k - P) U k e t  f k - 1 . r .  (5a)  

Equating coefficients of ek-2p-2  in (46) yields 
k 

[ ( n  - p )  u n  ( + k - n , r  ex - $ k - n , x  6 , )  f ( k  - n - p  - 1 )*k-n ( Un,,@t - U n , ~ e x ) l  
n =O 

n=O 

For k = 0, we have from (5) 

Substituting in (6b) for llfo, I,!I~,, and k,, from (6a), we have 

p u o ( 8 x A  - ex&,) = @t(Uo,#r - uo,t&). (7) 

In the usual case (Weiss et a1 1983) uo (and higher u k )  are algebraically determined. 
Here, we have a differential equation for uo because of the cancellation of the leading 
order terms in (4b). Solution of (7) would, in general, involve a constant of integration. 
If we assume, following Jimbo et a1 (1982), that the conditions of the implicit function 
theorem hold on the singularity manifold, then we can solve for x = g( t )  and consider 
only u k  = u k (  t ) .  This reduces ( 7 )  to 

1 duo pg, ,  
uo dt gr 
--=- 

with the solution 

uo = A g f  

where A is a constant of integration. As p is integer, uo will be single-valued. 

equation 
If we substitute in (5b) for * k ,  GkX and lclkr from ( s a )  we get the general differential 

u k X u o e M k +  ~ ~ - ~ ~ I ~ o ~ x ~ , p ~ ~ + ~ ~ + ~ ~ ~ o ~ ~ , r ~ ,  - e,e, ,)p(k+ l ) ( k - p )  

= G(ui ,  6 and their derivatives) (8) 
where G is some complicated function of its arguments and i goes from 1 to k - 1. 
‘Resonances’ arise when the left-hand side vanishes. These correspond to stages in 
the expansion at which arbitrary functions can appear. In this case, we have only one 
‘resonance’ and it is at k = - 1 ,  corresponding to the arbitrary singularity manifold. 

The second arbitrary function appears in the form of the infinite constants of 
integration arising from the solutions of (8). This was suggested by Friedman (1984). 
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Under the ansatz of Jimbo et a1 (1982), (8) simplifies to 

This equation has the formal solution (Ince 1956) 

where K is an arbitrary constant of integration. The form of G ensures that it is a 
single-valued function of its arguments (viz u ~ . . , ~ - ~ ,  6 and their derivatives). We have 
seen that U,, is single-valued. Therefore ul, u2, etc, are single-valued for all admissible 
(integer) values of p .  

Thus, we have the requisite number of arbitrary functions and are able to perform 
a consistent single-valued expansion about the singularity manifold. By our extension 
of the PainlevC test, (1) has the PainlevC property and is integrable. 

A similar conclusion is arrived at by considering a typical reduction of ( l ) ,  obtained 
by looking for travelling wave solutions U = u ( x  - u t ) .  Then the non-linear terms in 
(1) cancel out. The remaining linear equation has the PainlevC property (Ince 1956). 
Thus, according to the original version of the PainlevC test, our model equation is 
integrable. 
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